3.5.30 \(\int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [430]

Optimal. Leaf size=154 \[ -\frac {\sqrt {i a-b} (A+i B) \text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {\sqrt {i a+b} (A-i B) \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \]

[Out]

-(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a-b)^(1/2)/d+(A-I*B)*arctanh((I*a+b)
^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1/2)/d-2*A*(a+b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3689, 3697, 3696, 95, 209, 212} \begin {gather*} -\frac {\sqrt {-b+i a} (A+i B) \text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {\sqrt {b+i a} (A-i B) \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

-((Sqrt[I*a - b]*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d) + (Sqrt[I*a
 + b]*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - (2*A*Sqrt[a + b*Tan[
c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3689

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f
*(m + 1)*(a^2 + b^2))), x] + Dist[1/(b*(m + 1)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f
*x])^(n - 1)*Simp[b*B*(b*c*(m + 1) + a*d*n) + A*b*(a*c*(m + 1) - b*d*n) - b*(A*(b*c - a*d) - B*(a*c + b*d))*(m
 + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B},
 x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegerQ[
m] || IntegersQ[2*m, 2*n])

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx &=-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-2 \int \frac {\frac {1}{2} (-A b-a B)+\frac {1}{2} (a A-b B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\\ &=-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {1}{2} ((i a-b) (A+i B)) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx-\left (\frac {1}{2} (-A b-a B)-\frac {1}{2} i (a A-b B)\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\\ &=-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}+\frac {((i a+b) (A-i B)) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac {((i a-b) (A+i B)) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}+\frac {((i a+b) (A-i B)) \text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {((i a-b) (A+i B)) \text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {i a-b} (A+i B) \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {\sqrt {i a+b} (A-i B) \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.55, size = 169, normalized size = 1.10 \begin {gather*} -\frac {\sqrt [4]{-1} \sqrt {-a+i b} (A-i B) \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+\sqrt [4]{-1} \sqrt {a+i b} (A+i B) \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+\frac {2 A \sqrt {a+b \tan (c+d x)}}{\sqrt {\tan (c+d x)}}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

-(((-1)^(1/4)*Sqrt[-a + I*b]*(A - I*B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c
+ d*x]]] + (-1)^(1/4)*Sqrt[a + I*b]*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*
Tan[c + d*x]]] + (2*A*Sqrt[a + b*Tan[c + d*x]])/Sqrt[Tan[c + d*x]])/d)

________________________________________________________________________________________

Maple [B] result has leaf size over 500,000. Avoiding possible recursion issues.
time = 0.92, size = 2178365, normalized size = 14145.23 \[\text {output too large to display}\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))/tan(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2))/tan(c + d*x)^(3/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2))/tan(c + d*x)^(3/2), x)

________________________________________________________________________________________